手机注册或绑定手机,可免费播放5道试题。

  • 当前位置:首页>中考数学>知识点试题

    中考试卷-地区 中考试卷-知识点
    年份
    共计23道相关试题
    四边形ABCD中∠B=∠D90°,∠BAD135°,在边BCDC上是否存在点MN使△AMN周长最小?若存在试判断△AMN的形状,若不存在,试说明理由?
    在直角坐标系中有RtABC,两直角边AB3AC4,且AC两点分别在x轴、y轴上运动.
    (1)求当BCy轴垂直时过点B的反比例函数解析式;
    (2)求点O与点B间的最大距离为多少?
    如图,在边长为10的菱形ABCD中,对角线BD16,点EAB的中点,PQBD上的动点,且始终保持PQ2,则四边形AEPQ周长的最小值是________.
    已知,矩形纸片ABCD中,AB10cmAD8cm,按下列步骤进行操作:如图①,在线段AD上任意取一点E,沿EBEC剪下一个三角形纸片EBC(余下部分不再使用);如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;如图
    ③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GBGE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HCHE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)发现:
    (1)通过操作,最后拼成的四边形形状为________;探究:
    (2)由于题中点EMN的位置不确定,因而所得四边形的周长会发生变化,探究下列问题:①拼成的四边形的周长取决于线段________的长;②通过操作发现,四边形的周长存在最大值和最小值,请在下图分别画出相应的剪拼图并在下方横线上直接写出该四边形的周长最值.
    如图,直线y=-3x3x轴、y轴分别交于AB两点,顶点C在直线x2上的抛物线经过AB两点.
    (1)求抛物线的解析式;
    (2)连接AC,在抛物线上求点P,使得△PAC为直角三角形且与△OAB相似;
    (3)设抛物线与x轴另一交点为点D,在直线AB上找一点M,使得△CDM的周长最小,求出点M的坐标.
    (2014莆田)如图,菱形ABCD的边长为4,∠BAD120°,点EAB的中点,点FAC上的一动点,则EFBF的最小值是________.
    (2014湖北宜昌)在矩形ABCD中,,点GH分别在边ABDC上,且HAHG,点EAB边上的一个动点,连接HE,把△AHE沿直线HE翻折得到△FHE.(1)如图1,当DHDA时,①填空:∠HGA=________度;②若EFHG,求∠AHE的度数,并求此时a最小值;(2)如图3,∠AEH60°,EG2BG,连接FG,交边DC于点P,且FGABG为垂足,求a的值.
    (2014山东济南)如图1,反比例函数(x0)的图象经过点A(1),射线AB与反比例函数图象交于另一点B(1a),射线ACy轴交于点C,∠BAC75°,ADy轴,垂足为D
    (1)求k的值;
    (2)求tanDAC的值及直线AC的解析式;
    (3)如图2M是线段AC上方反比例函数图象上一动点,过M作直线lx轴,与AC相交于点N,连接CM,求△CMN面积的最大值.
    (2014福建泉州)如图,在锐角三角形纸片ABC中,ACBC,点DEF分别在边ABBCCA上.
    (1)已知:DEACDFBC
    ①判断四边形DECF一定是什么形状;
    ②裁剪当AC24cmBC20cm,∠ACB45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论;
    (2)折叠请你只用两次折叠,确定四边形的顶点DECF,使它恰好为菱形,并说明你的折法和理由.
    (2014天津)在平面直角坐标系中,O为原点,点A(-20),点B(02),点E,点F分别为OAOB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OEDF′,记旋转角为α.(Ⅰ)如图①,当α=90°,求AE′,BF′的长;(Ⅱ)如图②,当α=135°,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).
  • 关于题谷
  • 联系我们
  • 版权声明
  • 使用协议

  • COPYRIGHT (C) 2012-2018 WWW.TIGU.CN INC. ALL RIGHTS RESERVED. 题谷教育 版权所有

    京ICP备12041185号 京公网安备110102006152